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PROPAGATTION OF SOUND INTO A WIND-CREATED SHADOW ZONE

By David C. Pridmore-Brown

SUMMARY

The general wave equation is derived governing the propagastion of
sound in a stratified moving medium, the velocity of which varies only
elong one coordingte. Under the assumption that the flow velocity is
small and slowly varying, a simplifled equation ls adopted which 1ls sat-
isfactory for the present gpplication. A solution 1s found to thls equa-
tion corresponding to the pressure fleld around a spherical source locgted
above a plane ground In s horizontal wind whose velocity increases wilth
altitude. It 1s shown that within the acoustlc shadow that forms on the
upwind side of such a source the pressure fleld 1s similar to that which
is obtained in the corresponding problem of a sound source in a tempers-
ture gradient. An expression is derlived for the rate of asttenuation
within a shadow which is brought about by the presence of both a wind and
a. temperature gradient.

INTRODUCTION

An important phenomenon assoclated with the propagation of sound in
the atmosphere is that of the refraction of the acoustlic rays which can
be brought sbout not only by the presence of a temperature gradient but
also by the presence of a wind with a gradient in speed. A uniform wind
willl have little effect on the sound propagation since 1ts speed will, in
genersl, be much smaller than that of sound. However, the presence of g
wind gradient leads to an effective varistion in the speed of sound at
different points, and this causes a refraction of the rsys, Just as in
the case of a temperature gradient. The important difference between the
two phenomena lles in the fact that In a temperature gradient the local
speed of sound is determined by the temperature at that point, whereas in
the wind cese the effective sound speed depends on the direction as well
as on the magnitude of the wind velocity. This means that, assuming the.
gradient in each case to lie always 1n the same direction, call it the
vertical, the sound field around a spherical source in a temperature
gradient will be symmetricel about that vertlcal which passes through the
source; in other words, 1t will depend on only two coordinates. In the
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wind case, however, this symmetry clearly no longer exlsts, and the fleld
will necessarily depend on three coordinates.

This phenomenon leads to an interesting type of shadow formation in
the wind case. If & spherical socurce 1s situsted above ground in a hori-
zontal wind whose velocity increases uniformly with heilght, then a shadow
region into which no acoustic rays penetrate will form on the upwind side
of the source but not on the downwind side. In fact, the distance to the
shadow will be a minimum directly into the wind and will increase to
infinity at right angles to it. This slbtuation is 1illustrated in fig-
ure 1. In the presence of a negative temperature gradient alone, the
shadow distence is, of course, the same in gll directions.

A consideration of these facts suggested the tentative assumption
which was made in a previous report (ref. 1) on the sound field in a wind-
created shadow. There it was assumed that an expression for the §if-
fracted fleld within the wind-created shadow could be obtalned from the
corresponding expression for the tempersture-cregted shadow by replacing
the sonic velocity gradient by the wind veloclity gradient times the cosine
of the angle between the sound and wind directions. The results of the
present study furnish the Justification for this assumption.

This investigation was conducted at the Massachusetts Institute of
Technology Acoustics Laboratory under the sponsorship and with the finan-
clal assistence of the National Advisory Committee for Aeronautics.

SYMBOLS
Ap constant in H_2/5(1)(Ane-i#) =0
a defined in equation (11)
Cy1,Co - contours
c sonic speed
D solution to equations (5) or (18) which represents down-
going wave
Eég)(x) Hankel function of second kind of order n
h aource height

Ty imaginary
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Jo(x)
k

M

Re

X,¥,2
xl,X2,xB

R W Q
I
@
!
L

zero-order Bessel fUnction.
propagetion constant, afc
Mech number of wind, V/e
sound p?essure

real

radisl coordinste parallel to ground plane, distance from
source _

distance from source at height h +to shadow boundary at
bheight =z : i .

time

travel time from source at height h +to shadow boundary
at height =

solution to equationé (5) or (18) which represents upgoling
wave

particle velocity; functlon of =z, &, and ¥ deflned in
equstion (22)

wind velocity

defined in equation (13)
rectangular coordinates

acoustic impedance of ground
wave-number componeht in x-direction

wave-number component in y-directlon

impedsnce ratio, Z/p.c
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) polar angle of wave mumber, tan~1(B/a)
5 wave-number component in horizontal plane, VG? + 32
p=1or2
p density fluctuations
Po density of medium

polar angle
w angular frequency

ANATYSTS

Derivation of Wave Equation

In an inviscid medlum moving with the veloclty V the linearized
Navier-Stokes equations for the conservation of msss and momentum become,
in the absence of sources,

B, v, M

at+‘.Tax1+ooaxi—0 (1)
.aﬁ.'.u_ ﬂm.;.v.a_li:__];@_ (2)
ot > aX5 axl poaxi

provided the wind veloclty is assumed to lle in the xl-direction and to

be a function only of X5 Here p, represents the static density of

the medium which 1s assumed constent; the density fluctuations p, the
sound pressure p, and the particle veloelty uy are considered to be

small quantities of the first order. If the further assumption is made
that p = c2p, that 1s, that the pressure and density variations are
adisbatically related, then these equations yield

__22 _ (1 _'M2)32p + p . % _2M 3Pp
+ X2  Jdy°e  d2° ¢

Qs

dx ot * 20o¢ 3z Ox

L
o2

Q/
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where M = V/c and the coordinates xy bhave been relabeled x, ¥,
and z.

It is next assumed that the sound pressure p and the vertical
component of the particle velocity uz vary harmonically in time as

e'iKCt and can be Fourier analysed in the x- and y-directions:

- w
P = -ikc-bﬂ ei(ax-l-ﬁy)F(auB;Z)da' as

]

S ()

usz = e'ikCt‘[/~ ei(ax+ﬁy)G(m,B,z)dm ag

/

The Fourier transforms are related by equation (2) which gives

=

= = 1pe(k - aM)G

5

Substitution of these relations into original differentisl equation (3)
then shows that F must sgtisfy

2 \
_Zzg'*k—anaMéEz*’ [(k-aM)E-a2-32]F=o (5)

together with eppropriate boundary and source conditions. Here
M' = aM/dz.

It is convenient to rewrite expressions (4) in polar coordinates by
putting

X =1r cos §

¥ = T cos ¢
a =k cos 0O
B =k

sini&

K dﬁ'dﬁ

3
8
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so that p becomes, with 7 =6 - @,

D =ﬂei"r ©% Y B(k,7,2)c ax dy (6)

The boundary condition at the ground surface, 2z = 0, can be apecl-
fied by requiring that the ratio of the pressure p +to the normsl com-
ponent of the particle veloclty u in this plane be equal to a complex
impedance Z independent of the angle of incidence. A point source of
sound ls considered to be located a height h above this plane.

The source conditlon cen be derived in the ususl way by writing p
as the sum of two functions, namely, p = py + Py, Where p, represents

the solution in an unbounded medium and p; is an everywhere-regular
solution to wave equation (3) chosen so that Do + Py satisfy the
boundary conditions. 8Slnce one of the requirements on P, 1is that 1t

represent outgolng radiation at greet heights on the upwind side of the
source, 1t will be convenient to label the two independent solutions of
equation (5) as D(z) and U(z), where D(z) represents a downcoming
wave and U(z) an upgolng one for large values of z. One can then
write p, in the form given by equation (6), where the corresponding

Fo is given below the source by

Fq AD(k,7,2) (72)

and above the source by

Fo

]

BU(k,7,2) ()

55 . )
which corresponds to e K Iz hl in a stationary medlum. The two
constents A and B -are determined by the conditions at the source,
namely, by requiring that the pressure be continucus across the plane of
the source, z = h, and that the particle velocity (or pressure gradient)
suffer a discontinuity across this plane, which is determined by the
source strength. The first of these conditions yields the relation

AD(h) = BU(h) ' (8)
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The second source condlition may be obtalned by specifying the source
output. To do this reguires that

L/\un as = hg (9)

where u, is the component of u perpendicular to the surface ele-

ment dS; the integration 1s carried out over a smsll surface enclosing
the source. Now, from momentum equation (2) there follows

-ip ek - aM)uy - pocusM'dyy = =
J

on meking use of equations (4). The three components of the particle
veloclty are then

)
ul=aa_!L-+b.a_P._

axl 3x3

up = a & > (10)

where

®
'
I_l
n
)
(o)
0
-~
4]
|
&
S

(11)

Thus
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The last integral is over the two surfaces x; = 0" and x; = o+,
end 1t vanishes since p and its derivatives are continuocus along X;.

However, because of the discontinuity in the verticel component of Vp,
the first integral on the right does not vanish but becomes

U/‘a %E; dxy dxs

the integration belng taken over the two surfaces xz = h™ and x3 = nt.
Thus, introducing an expression of the form given by equation (6) for p,
and reverting to polar coordinates r, z gives

2:rfaei“r cos 7EBU'(h) - AD'(h]u de dy r dr

which must be equated to k4x. Here equations (7) have been used to

express F,, and the primes denote dlfferentiation wlth respect to z.

From the well-known relatlons

t
JL:/N Glrr cos 7 dy = Jo(kr)
2x -t

L/Nw Jolkr)r dk = 8(xr) = 0 | (r £ 0)
O .

k/NS(r)r dr = 1

There follows lmmediately
a[Bu'(n) - ap*(n)] = (12)

vwhere & = a(n).
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The two equations (8) and (12) determine A and B and, hence,
also the unbounded solution p,, which becomes above the source (z > n)

0 ¢
Po == f a [ ay ™ % 7 £ p(n)u(z) (13)
0 -1 .
Here
W= 1pgefk - a¥(h)] (U'D - D'V) (1)

and 1s independent of z. A similar expression holds below the source
but with z end h interchanged.

The general solution py + py can now be written

L] 7
o - _3:]‘ f‘ Jikr cos ¥ ;Eg(h) + Fp|U(z)k ac dy - (15)
tJo J g W

where F, is determined by requiring equation (15) to satisfy the normsl
impedance boundsry condition = - at z = 0. It turns out to
' grad p  lap,

be
- T
kU(0) -~ 1tU'(0)
where ¢ = B-Z_c. end the primes again denote differentlstion with respect
o]
to =z.

Approximate Solutions Vallid Near Ground

Up to now no restrictions have been placed on the Mach number M
beyond requiring that it vary in only one direction. In the general case
approximete solutions to equation (5) can be readily obtailned by a modi-
fied W.K.B. method (cf., e.g., the work of Langer, ref. 2). For the
present gpplication it will be sufficient to assume that both M2 and
M!'! are so small that the terms involving these quantities in equation (5)
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can be neglected. It will also be assumed that M dincreases linearly .
with sltitude from the value zero at the ground, z = O, so that

M = sz (1)

where s 18 a constant.

With these restrictions equation (5) becomes
a%p 2 _ .2
== 4+ (k2 -a“ - B~ - 2kasz)F = 0
3z2

or

QE§.+ 2 - k2 - 2kresz cos(y + ¢{]F =0 (18)
dz

The two restrictions on the range of valldity of this equation can
be expressed &s

8/k << 1 (19)

and

Bz << 1L (20)
The first is & high-frequency requirement, while the second 1s a restric-
tion to low helights; in practical cases in gtmospheric acoustics neither

restrictlon seems to be very stringent.

The general solution to equation (18) is of the form
Fle,7,z) = ul/azl/5(% u3/2) (21)

where
oy _
u= [ke - £2 - 2kksz cos(y + ¢)] [zekns cos(y + ¢)] : (22)
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and Z, /3 represents g linear combination of one-third-order Bessel

functions. The quantity € = £l will be specified later. The func-

tion U(z) cen be written provisionelly in terms of a Hankel function
of the pth kind as

U(z) = ul/23§7%(% u5/2) (23)

where P =1 or 2 depending on the value of € and will be specifiled
later. The function D(z) is then defined similerly in terms of the
other Hankel function.

Transformation of Integral in Complex Plane

It is of interest to notice that if the function F(k,7,z) = [D(h) +
F]J U(z) in equation (15) did not depend on 7y +then the integration over

¥ could be carried out directly and would yield J’O(nr), which was the
starting point in the problem of s sound source in & temperasture gradient
(ref. 3). In that case it proved advantsgeous to divide up the integral
into the sum of two imtegrals by writing 27, = ESL) + B(1). Guided by

these considerations the ¢ contour in equation (15) is deformed into
the sum of two Hankel functlon contours as shown in figure 2. This is
allowed since the integrand involves - ¥ only in the form cos ¥y and
cos(y + @), which are unchanged if 7 is increased by 2x, so that
clearly the contributions from the infinite branches of the contours
cancel each other. As in the case of the integrel representation of the
Hankel functions the integrsl converges provided that

- <arg kr <z - 7
where 1 lies between O and x. The solution now has the form

(-]
p = i—fc d'rf T o8 Y%F(EJ,Z)&C +
0
1 Y

-]
l'-f 5-7] _e_i_ttr cos 7 & F(e,7,z)ak (24)
TJe 0 W
2 ) .
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The convergence of these integrals In the complex «k plane is next
examined with a view to deforming the k Iintegration path into closed
contours, as was done in the temperature problem. In other words, for
the & integration in the first integral in equation (24), a contour
right be taken enclosing the first quadrant in the clockwise directilon,
and, similerly, a contour enclosing the fourth quadrant in the counter-
clockwise direction for the second integral as indicated in figure 3.

To Justify this it must be shown that the contributions from the infinite
arcs vanish, that there are no branch points in the first and fourth
quedrants of the x plane, and that the integrsls along the Ilmaginary
exes cancel each other.

The absence of branch points follows dlrectly from the fact that the

functions ul/zﬂi?%<% u3/2) are integrsl transcendental functions of u,

that is, they are single valued and analytic for gll finite values of u.
(They are the solutions to d2F/du2) + u¥ = O, which is regular for all
finite values of u.) Also, u(k) is anslytic in the first and fourth

quadremts of the complex k plane, and, hence, e €98 7 F(k,y,z) is
free of branch points in this reglon.

The behavior of the integrands on the infinlite arcs is next studied.

First of all it is noticed that the exponential term el#¥ €08 7 tengs to
zero as Kr. tends to infinity in the first quadrant for velues of ¥
lying on the contour C;, and similarly this exponential tends to zero as

kr tends to infinity in the fourth quesdrant for values of ¢ lying on
the contour Cp. It must also be shown that F(n,y,z) -0 a8 Kr —ew

when Rek > O (Re indicates real values). In the limit of large values
of K, u Dbecomes .

|¢,2EL + 2 % sz cos(y +¢)]

U = =

[2ektcs cos(y + ¢)JE/§

whence

%u3/2 - ('.l:i)e[ k2 nz]

+
3ks cos{y + @)

If the followlng convention 1s adopted .
1/2 i/2
E{a - k2 - 2kksz cos(y + ¢)] = i[:na - k2 + 2kksz cos{y + ¢)]
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for k2 > k2 - 2kksz cos(y + ¢), then 1t is necessary to choose the minus
sign. This reguires that p =1 if €= -1 and p=2 1if e =1. It
is then easily found from the asymptotic forms of equation (23) that

—ie2 3/2_,.3/2
D(h)U(z) _,%(wl)-l/lpe ez’ S-uy )

K

where u; = u(h). Similarly,

kD(0) - 1¢D'(0) -iex/6 -2K2
kU(0) - 1tut(0) etex/ exp[}kﬂ cos{y + ¢)}

/3

1
U(2)U(n) - % i[ae .8 cos(y + ¢)i|“ o-2:2/3ks cos(y+) ~(z+h) Snie/12
K

whence
1/3

F(k,7,2) ﬂf—ﬁI:ZG % cos(y + ¢):I [e'u(z"h) + e"‘-(z-l'h)_J
it

end so has the requlred behavior.

It can now be proved that the two integrals taken along the imagi-
nary exes cancel each other, that 1s, that

ior 4 T
j f e*®T %% 7 p(k,y)r ar ay +j e™FT €98 7 p(k,y)k ax dy = O
o Jey o Jeo

(25)
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for
- <arg kr < =u - 7

where 17 lles between O and xn. To do this kr 1is replaced by
krel™ in the second integral in equation (25) to obtain

e "
J[ Jf e T COB 7 n(k,y)k dx ay
0 2’

with the requirement -n < arg krel® < s =5 or - - x < arg kr < -1.
The integration path Co' (shown by the heavy deshed line in fig. 2)

is now the ssme as C; +tseken in the opposite sense and displaced by =x.

Accordingly ¥ 1is replaced by ¥ + 7, so that this integral -takes the
form

Jeo
-f f gler cos 7 F[—n,('y + :t)]n de ay
(0] C1

with
- <arg kr <z - 1

For equation (25) to hold it is then necessary for

F(x,7) = Fl-x,(y + =)

Reference to equation (22) shows that this condition is fulfilled in the
present case and, hence, that equation (25) is valid.

The generael expression for the pressure field p has now been
reduced to the sum of two contour integrals taken sround the first and
fourth quadrents of the Kk plane. These integrels can be expressed as
a sum of their residues teken st the poles of F(x,7,z) in this plane.
Finally, the integrations over ¢ can be evalusted approximately by a
saddle-point integration through the points of stationary phase of the
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integrands; namely, ¥ =0 for the Cj contour and ¥ = x for the
C2 contour.

First of all, on carrylng out the approximate integration over 7,
equation (24) becomes

P = J;-E-;[ < ei["r'(“/leI & F(s,0,2) ar +

%
(18t quadrant)
J\I.LE e—i[nr-(n:/l(-)] %F(h‘.,x,z) d.I;J (26)

(4th quadrant)

At this point the analysis is restricted to the case of a perfectly
hard ground by letting ¢ —» o in equation (16). The more general case
can be treated by the methods used in the temperature problem (ref. k).
For a hard ground the poles of F are glven by the roots of U'(0) = O,
which becomes

=245 - o

whence

ien
-23-u03/2 = Ae

where the A, components are constants, A = 0.686, Ay = 3.90,
Az =T7.05, . . ., Ap-= El - (3/11-)]:1: (where n 1is large).

Substituting for uy gives

(k? - “n?)B/E -
2ekks cos(y + @) B

€ix

2 uc
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or

2/3

1
k2 = K2 - EennskAn cos(y + @) e° Ij

As a result of the restriction s/k << 1 (eq. (19)), this equation can
be writen spproximstely

2/3
ei"] / (27)

Kp =~ k l-%—[%%An cos(y + @) e

It is now required that Imk, > O (where Im indicates imaginary

values) for %-< ¢ < %’1 (damped outgoing propesgetion on upwind side of

source). This leads to the result that € = -1 and p = 1.

Since the values of Ky all lie in the first quadrant, the contour

integral enclosing the fourth quadrant must vanishj; this leaves the
integral enclosing the first quadrant in the k plane, which can be
evaluated as a sum of residues in the form

p = aﬁzi |z o om0 5 (aD'(Kn’O) (28)
n
n=

a—)U‘ (kn,0)

7=0
By using the Wronskian relationship D'U - IU' = uyW, which gives

D' = eqW/U at k = Kp, equation (28) can be rewritten in terms of U
only as follows

ST r+(rt/k)__] 8, U(h)U(z)
o =Z (e [ L:(o)%a/an)u'(o)] (29)

n=1

where

U= u1/231/3(1)<% u5/2)
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i u = (kz - k2 - 2kkysz cos ¢) (-2krs cos ?5)"2/3 (30)
oy = k[ - %(3 £ Ay cos ¢)2/5] (31)

B o5t (e ) = 0
al'l = ipsc(k - ksh cos @)

High-Frequency Behavior of Solution

As in the corresponding temperasture problem, the high-~frequency
behavior of the solution (eq. (29)) can be studied in the shadow zone by
replacing the functions U by thelr asymptotic. forms, which are wvalid

for large values of u. It is then found, on reintroducing the time
factor e"i"’t, that

D =ZBnr"1/ 2exp {i Ecnr + %(u}/ 2, ul5/ 2) - cnt]} (32)

n=1

where

On substituting for k, from equation (31) into equation (30)

u = (—-2% cos ¢)l/5kz ¥ (% Ane-iﬂ)2/3

is obtained which gives spproximately, for large values of kz,

. 2.5/2 k]:% /2,302 zﬁn(z/c)l/aj
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‘where

o = -28 cos §

oo - B con 95003

The terms in the exponent of the asymptotic solution (32) become
then

KpT + %Ex(z):P/E + %El(h)]3/2 -~ at = kyr + k[% 01/2(z3/2 ¥ h3/2) +

25n(z/c)1/2 + (h/c)l/z - w‘b]

= k(r - ro)(1 - 8n) - c(t - to)

Here, these quantities bhave been identified with ro, the horizontal

distance from source to shadow boundary, and with t5, the corresponding

travel along the limiting ray, which have been derived from ray accustics
in the appendix.

In terms of these quantities the high-frequency form of the solu-

tion is
=i b=t -_-(0 1-
P NZ (Constent), E%)ll/; r'l [ o Snﬂ (33)
n=1 -

(zh)

Within the shadow zone the solution 1s adequately expressed by the

first mode alone because of the rapid attenuation of the higher modes.
To this approximation the sound pressure is damped at the rate of

8.68TmkBy ~ 6.1(-s cos #)2/%6/ 3apunit aistence (34)

within the shadow (g <g< %, r > ro). This 1s in addition to the

Gamping due to cylindricel divergence, which ie expressed by the
factor r-l/z.
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The combined effects of a wind and e temperature gradient can be
accounted for by allowing k to vary with z. In the high-frequency
approximgtion this results in the factor -s cos ¢ in equation (3k)

being replaced by -8 cos ¢ -1 %.z&’ where % is positive for a tem-
c
persture inversion. A shadow will form in this case within that sector

2
for which the factor (—s cos ¢ -1 ic—) / > is real. By replacing s

c d=
by -3—;- %, the result is obtained that a shadow will form within the

sector defined by
de |8V
12} < (&f4)

provided thet ¢ 1s now measured from the 180° line (-x-exis) and

g'i > 0. If %C- > g- then the temperature gradient predominstes over
vA ]

the veloclty gradlient. In this csse there will be a shedow 1In g1l

directions if %% < 0 end no shadow at all if %§.>-o.

Within the normel or illuminated zone the high-frequency (ray
acoustics) spproximation to the solution can be readily obtained by
integrating equstion (24) around the points of stationary phase of the
integrand in the k plene (ref. 5).

Messachusetts Institute of Technology,
Cambridge, Mass., April 6, 1956.
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APPENDIX A

RAY ACOUSTICS IN A WIND GRADIENT

The acoustic-ray paths are determined by Fermat g principle, which
requires that they be such that the integral

ds
Al
Jrc + V gin 0 cos ¢ (a1)

is statlonary. Here ds is an increment of path length along the ray,
V is the wind speed, © 1s the angle of inclination of the ray from
the vertical, end @ is the constant polar angle between the ray and
the wind direction.

From the geometry of the problem 1t is seen that

rl

Jl + ()2

where r' = g-'f; With this substitution, end writing ds = VL + (r')%4z,

the Euler eguation is obtained for which equation (Al) is statlonary in
the form

g8in 6 =

d f 1+ (r')2 ) o

dZ or’ \jl + (r')2 + Mr! cos ¢

or

9 14 (xr1)2

o Jl+ (r')@ + Mr' cos ¢

where M = V/c and K is & ray parameter. The limiting ray which
defines the shadow boundary can be specifiled by requiring that r' — e
at the ground, where the wind veloclty 1s zero. This requirement gives

= 1 <for the limiting rey. Carrylng out the differentiating in equa-
tion (A2) and solving for r' glves

-k (82)
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r'=m(l+i-6-ncos¢+...) (a3)

if higher powergs of M are ignored. If M 1s set equal to sz it is
found to the first order iIn M that

=z

z
r =j dz =2
0 -28z cos § y-2s cos ¢

The total horizontal distence between the source gt height h and a
point at height 2z on the shadow boundary is then

. h ‘
To = a(ﬁeg 205 @ * {228 cos ;3) (k)

The corresponding travel time <ty of the limiting ray between

these two points is gilven by the Integral in equation (A1), which becomes 3
on substituting for ds end sin 6 in terms of »r!,

%f 1+ ()2 az

\/l + (r')2 + Mr' cos ¢

Equation (A3) is now used to write r' = 1[y-2M cos @, and M is set
equal to sz. Then, to the same approximstion as before,

ety = ro + %(-23 cos ¢)l/2(z5/2 + h5/2) (a5)

is obtained, where r, is given in equation (Ak).
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Figure 1l.- Tllustration of mechanism of shadow-zone formation.
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